SONA COLLEGE OF TECHNOLOGY, SALEM-5

(An Autonomous Institution)

M.E-Civil Engineering (Structural Engineering)

CURRICULUM and SYLLABI

[For students admitted in 2020-2021]

M.E / M.Tech Regulation 2019

Approved by BOS and Academic Council meetings

Sona College of Technology, Salem (An Autonomous Institution) Courses of Study for ME I Semester under Regulations 2019 Civil Engineering Branch: Structural Engineering

S. No	Course Code	Course Title	Lecture	Tutorial	Practical	Credit
	1	Theory	1	I	I	I
1	P19STR101	Finite Element Analysis	3	1	0	4
2	P19STR102	Theory of Elasticity and Plasticity	3	1	0	4
3	P19STR504	Elective : Stability of Structures	3	0	0	3
4	P19STR510	Elective : Advanced Concrete Technology	3	0	0	3
5	P19GE101	Research Methodology and IPR	2	0	0	2
6	P19GE701	Audit Course: English for Research Paper Writing	2	0	0	0
		Practical				
7	P19STR103	Structural Engineering Laboratory	0	0	4	2
				Т	otal Credits	18

Approved by

Chairperson, Civil Engineering BOSMember Secretary, Academic CouncilChairperson, Academic Council & PrincipalDr.R.MalathyDr.R.ShivakumarDr.S.R.R.Senthil Kumar

Copy to:-

HOD/Civil, First Semester ME STR Students and Staff, COE

Sona College of Technology, Salem (An Autonomous Institution) Courses of Study for ME II Semester under Regulations 2019 Civil Engineering Branch: Structural Engineering

S. No	Course Code	Course Title	Lecture	Tutorial	Practical	Credit	Total Contact Hours
		Theory					Hours
1	P19STR201	Advanced Design of Concrete Structures	3	0	0	3	45
2	P19STR202	Advanced Design of Steel Structures	3	0	0	3	45
3	P19STR517	Elective – Design of Sub Structures	3	0	0	3	45
4	P19STR525	Elective – Internet of Things of Civil Engineering	3	0	0	3	45
5	P19GE702	Audit Course – Stress Management by Yoga	2	0	0	0	30
		Practical					
6	P19STR203	Structural Software Application Laboratory	1	0	4	3	75
7	P19STR204	Mini Project	0	0	4	2	60
				To	otal Credits	17	

Approved by

Chairperson, Civil Engineering BOS Dr.R.Malathy

Member Secretary, Academic Council Dr.R.Shivakumar Chairperson, Academic Council & Principal Dr.S.R.R.Senthil Kumar

Copy to:-

HOD/Civil, Second Semester ME STR Students and Staff, COE

Sona College of Technology, Salem (An Autonomous Institution) Courses of Study for ME III Semester under Regulations 2019 Civil Engineering Branch: Structural Engineering

S. No	Course Code	Course Title	Lecture	Tutorial	Practical	Credit	Total Contact Hours
		Theory	1	I			L
1	P19STR301	Design of Steel Concrete Composite Structures	3	0	0	3	45
2	P19STR501	Elective: Prefabricated Structures	3	0	0	3	45
3	P19END601	Open Elective: Product Design and Manufacturing	- 3	0	0	2	45
4	P19ISE601	Open Elective: Transport Safety	- 3	0	0	3	45
		Practical					
5	P19STR302	Technical Seminar	0	0	2	1	30
6	P19STR303	Practical Training	0	0	4	2	60
7	P19STR304	Project Phase – I	0	0	16	8	240
				То	tal Credits	20	

Approved by

Chairperson, Civil Engineering BOS Dr.R.Malathy

Member Secretary, Academic Council Dr.R.Shivakumar Chairperson, Academic Council & Principal Dr.S.R.R.Senthil Kumar

Copy to:-

HOD/Civil, Third Semester ME STR Students and Staff, COE

Sona College of Technology, Salem (An Autonomous Institution) Courses of Study for ME IV Semester under Regulations 2019 Civil Engineering Branch: Structural Engineering

S. No	Course Code		Course Title	Lecture	Tutorial	Practical	Credit	Total Contact Hours
			Practical					
1	P19STR401	Project Phase – II		0	0	28	14	420
					To	tal Credits	14	

Approved by

Chairperson, Civil Engineering BOS Dr.R.Malathy Member Secretary, Academic Council Dr.R.Shivakumar Chairperson, Academic Council & Principal Dr.S.R.R.Senthil Kumar

Copy to:-

HOD/Civil, Fourth Semester ME STR Students and Staff, COE

Sona College of Technology, Salem (An Autonomous Institution) Courses of Study for ME I Semester under Regulations 2019 Civil Engineering Branch: Structural Engineering

S. No	Course Code	Course Title	Lecture	Tutorial	Practical	Credit
	1	Theory	1	I	I	I
1	P19STR101	Finite Element Analysis	3	1	0	4
2	P19STR102	Theory of Elasticity and Plasticity	3	1	0	4
3	P19STR504	Elective : Stability of Structures	3	0	0	3
4	P19STR510	Elective : Advanced Concrete Technology	3	0	0	3
5	P19GE101	Research Methodology and IPR	2	0	0	2
6	P19GE701	Audit Course: English for Research Paper Writing	2	0	0	0
		Practical				
7	P19STR103	Structural Engineering Laboratory	0	0	4	2
				Т	otal Credits	18

Approved by

Chairperson, Civil Engineering BOSMember Secretary, Academic CouncilChairperson, Academic Council & PrincipalDr.R.MalathyDr.R.ShivakumarDr.S.R.R.Senthil Kumar

Copy to:-

HOD/Civil, First Semester ME STR Students and Staff, COE

Upon completion of this course, the student will be able to...

CO1 Discuss the displacement models to solve practical problems in Structural engineering.

CO2 Apply numerical techniques of finite element analysis to solve real time problems.

CO3 Manipulate the shape function and interpolation function to study structural behaviour. CO4 Implement linear and quadratic elements in the finite element analysis of various types of

structures.

CO5 Predict structural behaviour using strain displacement matrix and element stiffness matrix.

UNIT-I: INDRODUCTION

P19STR101

COURSE OUTCOMES

Differential equilibrium equations - Strain displacement relation - Linear constitutive relation - Special cases - Principle of stationary potential energy - Application to finite element methods. Some numerical techniques in finite element analysis.

UNIT -II: DISPLACEMET MODELS

Displacement models - Convergence requirements. Natural coordinate systems - Shape function. Interpolation function - Linear and quadratic elements - Lagrange and Serendipity elements - Strain displacement matrix - Element stiffness matrix and nodal load vector.

UNIT –III: ISOPARAMETRIC ELEMENTS

Two dimensional isoparametric elements - Four noded quadrilateral elements - Triangular elements -Computation of stiffness matrix for isoparametric elements - Numerical integration (Gauss quadrature) -Convergence criteria for isoparametric elements.

UNIT -IV: APPLICATIONS OF FEM

Assemblage of elements - Direct stiffness method - Special characteristics of stiffness matrix - Boundary condition and reaction - Gauss elimination and LDLT decomposition - Basic steps in finite element analysis.

UNIT -V: ANALYSIS OF STRUCTURES

Analysis of framed Structures - 2D truss element - 2D beam element. Analysis of plate bending: Basic theory of plate bending - Displacement functions - plate bending Elements. Plane stress and plane strain analysis: Triangular elements - Rectangular elements.

Total:45 hrs.

REFERENCE BOOKS:

- 1. Bhavikatti.S.S, "Finite Element Analysis", New Age International Publishers, 2015.
- 2. Chandrupatla, R.T. and Belegundu, A.D., "Introduction to Finite Elements in Engineering", Prentice Hall of India, 2011.
- 3. Rao.S.S, "Finite Element Method in Engineering", Butterworth Heinmann, UK, 2008.
- 4. Logan D. L., A First Course in the Finite Element Method, Cengage Learning, 2015.

5. R.D.Cook, Concepts and Applications of Finite Element Analysis, John Wiley & Sons, 2011.

FINITE ELEMENT ANALYSIS

3 1 0 4

9

9

9

9

P19STR102 THEORY OF ELASTICITY AND PLASTICITY 3 1 0 4 **COURSE OUTCOMES** Upon completion of this course, the student will be able to... CO1 Explain the concept of stress and strain and their relationships CO2 Analyze the two dimensional problems in Cartesian and polar coordinates CO3 Apply the concept of torsion to Prismatic bars of different sections CO4 Solve simple problems of elasticity and plasticity understanding the basic concepts. CO5 Apply numerical methods to solve continuum problems. **UNIT-I: ANALYSIS OF STRESS AND STRAIN IN CARTESIAN COORDINATES** 9 Displacement, Analysis of stress (two and three dimension)- Body force, surface force - Uniform state of stress - Principal stresses - stress transformation laws - Differential equations of equilibrium. Analysis of strain (two and three dimension) Strain displacement relations - Compatibility equations - state of strain at a point – strain transformation - principal strain - principle of superposition. Stress-strain relations generalized Hooke's law - Lame's constants, Boundary value problems UNIT -II: TWO DIMENSIONAL PROBLEMS OF ELASTICITY IN CARTESIAN **COORDINATES** 9 Plane stress and Plane strain problems - Airy's stress function - Polynomials - Direct method of determining Airy's polynomial stress function - Solution of Biharmonic equation by fourier series - St. Venant principle. **UNIT -III: TWO DIMENSIONAL PROBLEMS IN POLAR COORDINATES** 9 General equations in polar coordinates - Stress distribution symmetrical about an axis - Pure bending of curved bars - Strain components in polar coordinates - Displacements for symmetrical stress distribution - Rotating Disc - Bending of a curved bar by force at the end **UNIT -IV: TORSION OF PRISMATIC BARS** General solutions of the problem by displacement (St. Venant's warping function) and force (Prandtl's stress function) approaches - Membrane analogy-Torsion of shafts of circular and noncircular (elliptic, triangular and rectangular) cross sectional shapes. Torsion of hollow thin walled single and multicelled sections. **UNIT -V: PLASTIC DEFORMATION** 9 Introduction to stress-strain curve - Ideal plastic body - Criterion of yielding - Rankine's theory -St.Venant's theory - Tresca's criterion - Beltramis theory - Von-mises criterion - Mohr's theory of yielding - yield surface - Plastic potential, Isotropic Hardening-Flow rule (plastic stress- strain relation) Prandtl Reuss equations - Plastic work - Plastic potential Nadai's sand heap analogy. Total: 45 hrs. **REFERENCE BOOKS:** 1. Sadhu Singh, Theory of Plasticity, Khanna Publishers, N.Delhi, 2008. 2. S. Timoshenko and J. N. Goodier, Theory of Elasticity, Mc Graw Hill Book Co., 2010. 3. RagabA.R., Bayoumi S.E., Engineering Solid Mechanics, CRC Press, 1999

- 4. Computational Elasticity, AmeenM, Narosa, 2005.
- 5. Advanced Mechanics of Solids, Srinath L.S, Tata McGraw Hill, 2009.

P19STR103	STRUCTURAL ENGINEERING LABORATORY	0	0	4	2
COURSE OUTCO	MES				
Upon completion of	f this course, the student will be able to				
CO1 Design hig	h strength concrete and study the parameters affecting its performance				
CO2 Conduct N	on-Destructive tests on existing concrete structures				
CO3 Apply Eng	ineering principles to understand behaviour of structural elements				
CONTRACTO					20
CONTENTS:-					30
Study of stress-strai	n curve of high strength concrete				
Correlation between	n cube strength, cylindrical strength, split tensile strength and modulus	of ru	ptur	e	
Effect of cyclic load	ling on steel				
Non-Destructive tes	sting of existing concrete members				
Behaviour of beams	s under flexure, shear and torsion				
Model study on con	tinuous beam with influence line coefficients				
		Tota	al: 3	30 h	rs.
REFERENCE BO	OKS:				
1. Properties of Cor	crete, Neville A.M, 5 th Edition, Prentice Hall, 2013.				
2. Concrete Techno	logy, Shetty M.S., S.Chand and Co., 2008.				

P19STR504		STABI	LITY O)F STRU	CTURE	S		3	0 0	3
COURSE OUTCO	MES									
Upon completion of	f this course,	the student	will be a	able to						
CO1 Obtain the co										
CO2 Compare the	-		•							
CO3 Design a bea		•			ing in be	ams				
CO4 Explain the b					0					
CO5 Describe the										
UNIT – I: STAB				11						9
Introduction-Meth	ods of neutr	al equilibriu	ım- Effe	ective-len	gth conc	ept and d	esign cur	ve- G	overn	ing
equation for colur										
methods for the s										
columns - Built u	•	· -		-						
theory	1	U				U		U		
UNIT – II: METH	ODS OF ANA	LYSIS AN	D INELA	ASTIC BU	JCKLING	Ĵ				9
Approximate meth	ods - Rayle	igh and Ga	lerkin n	nethods -	Numer	ical metho	ods (New	mar	k's F	inite
Difference and mat	-	-								
		•				•				
well plot - Colum	n curves - I	Derivation o		-	formula	- Effecti	ve length	of C	Colum	ns -
well plot - Colum Inelastic behavior -			of colum	nn design		- Effecti	ve length	of C	Colum	ns -
well plot - Colum Inelastic behavior -			of colum	nn design		- Effecti	ve length	of C	Colum	ns -
	Tangent mo	lulus and D	of colum	nn design		- Effecti	ve length	of C		ns - 9
Inelastic behavior -	Tangent mo	lulus and D	of colum ouble me	nn design odulus the	eory.					9
Inelastic behavior - UNIT – III: BEAN	Tangent mod I COLUMN Introduction-E	dulus and D Sehaviour, S	of colum ouble ma Stability	nn design odulus the analysis	of beam	column	with sing	le an	d seve	9 eral
Inelastic behavior - UNIT – III: BEAN Beam columns: 1	Tangent mod A COLUMN Introduction-E distributed lo	dulus and D Sehaviour, S bad and end	of colum ouble me Stability couples.	analysis . Beams:	of beam Torsiona	column l buckling-	with sing Combined	le and	d seve	9 eral
Inelastic behavior - UNIT – III: BEAM Beam columns: I concentrated loads,	Tangent mod I COLUMN Introduction-H distributed lo ateral buckling	dulus and D Sehaviour, S bad and end g of beams, p	of colum ouble me Stability couples.	analysis . Beams:	of beam Torsiona	column l buckling-	with sing Combined	le and	d seve ional	9 eral
Inelastic behavior - UNIT – III: BEAM Beam columns: 1 concentrated loads, flexural buckling. L	Tangent mod A COLUMN Introduction-E distributed lo ateral buckling KLING OF E	dulus and D Sehaviour, S bad and end g of beams, p TRAMES	of colum ouble me Stability couples. ure bend	an design odulus the analysis . Beams: ling of simp	of beam Torsional ply suppo	column l buckling- rted and ca	with sing Combined ntilever be	le and Tors ams.	d seve ional	9 eral and 9
Inelastic behavior - UNIT – III: BEAN Beam columns: In concentrated loads, flexural buckling. L UNIT – IV: BUCH Buckling of fram equilibrium-Slope-	Tangent mod A COLUMN Introduction-H distributed le ateral buckling KLING OF H nes-Introduction deflection equ	dulus and D Sehaviour, S bad and end g of beams, p RAMES on-Modes cuations-Matr	of colum ouble me Stability couples. ure bend	an design odulus the analysis . Beams: ling of simp ling-Critics	of beam Torsional ply suppo	column l buckling- rted and ca	with sing Combined ntilever be	le and Tors ams.	d seve ional	9 eral and 9
Inelastic behavior - UNIT – III: BEAN Beam columns: I concentrated loads, flexural buckling. L UNIT – IV: BUCH Buckling of fram equilibrium-Slope- UNIT – V: BUCK	Tangent mod A COLUMN Introduction-E distributed lo ateral buckling KLING OF E hes-Introduction deflection equ LING OF P	dulus and D Sehaviour, S bad and end g of beams, p RAMES on-Modes c ations-Matr L ATES	of colum ouble me Stability couples. ure bend of buckl ix Analy	analysis . Beams: . Ing of simpling-Critica	of beam Torsional oly suppo al load	column l buckling- rted and ca using var	with sing Combined ntilever be ious met	le and Tors ams. hods:-	d seve ional - Neu	9 eral and 9 tral 9
Inelastic behavior - UNIT – III: BEAM Beam columns: I concentrated loads, flexural buckling. L UNIT – IV: BUCH Buckling of fram equilibrium-Slope- UNIT – V: BUCK Buckling of plates-D	Tangent mod A COLUMN Introduction-E distributed le ateral buckling KLING OF E hes-Introduction deflection equ LING OF P ifferential equ	dulus and D Sehaviour, S oad and end g of beams, p TRAMES on-Modes of nations-Matr LATES ation of plate	of colum ouble me Stability couples. ure bend of buckl ix Analy	analysis . Beams: . Ing of simpling-Critica	of beam Torsional oly suppo al load	column l buckling- rted and ca using var	with sing Combined ntilever be ious met	le and Tors ams. hods:-	d seve ional - Neu	9 eral and 9 tral 9
Inelastic behavior - UNIT – III: BEAN Beam columns: I concentrated loads, flexural buckling. L UNIT – IV: BUCH Buckling of fram equilibrium-Slope- UNIT – V: BUCK	Tangent mod A COLUMN Introduction-E distributed le ateral buckling KLING OF E hes-Introduction deflection equ LING OF P ifferential equ	dulus and D Sehaviour, S oad and end g of beams, p TRAMES on-Modes of nations-Matr LATES ation of plate	of colum ouble me Stability couples. ure bend of buckl ix Analy	analysis . Beams: . Ing of simpling-Critica	of beam Torsional oly suppo al load	column l buckling- rted and ca using var	with sing Combined ntilever be ious met	le and Tors ams. hods:-	d seve ional - Neu conditi	9 eral and 9 tral 9 ons-
Inelastic behavior - UNIT – III: BEAM Beam columns: I concentrated loads, flexural buckling. L UNIT – IV: BUCH Buckling of fram equilibrium-Slope- UNIT – V: BUCK Buckling of plates-D Energy method-Finit	Tangent mod A COLUMN Introduction-E distributed la ateral buckling KLING OF E bes-Introduction deflection equ LING OF P ifferential equ e difference m	dulus and D Sehaviour, S oad and end g of beams, p TRAMES on-Modes of nations-Matr LATES ation of plate	of colum ouble me Stability couples. ure bend of buckl ix Analy	analysis . Beams: . Ing of simpling-Critica	of beam Torsional oly suppo al load	column l buckling- rted and ca using var	with sing Combined ntilever be ious met	le and Tors ams. hods:-	d seve ional - Neu	9 eral and 9 tral 9 ons-
Inelastic behavior - UNIT – III: BEAM Beam columns: I concentrated loads, flexural buckling. L UNIT – IV: BUCH Buckling of fram equilibrium-Slope- UNIT – V: BUCK Buckling of plates-D Energy method-Finit REFERENCE BC	Tangent mod A COLUMN Introduction-E distributed le ateral buckling KLING OF E introduction deflection equ LING OF P ifferential equ e difference m	dulus and D Sehaviour, S oad and end g of beams, p TRAMES on-Modes of nations-Matr LATES ation of plate ethod.	of colum ouble me Stability couples. ure bend of buckling ix Analy	analysis analysis . Beams: ling of simp ling-Critica /sis.	of beam Torsiona oly suppo al load load on p	column l buckling- rted and ca using var lates for va	with sing Combined ntilever be ious met rious bour	le and Tors ams. hods:- ndary o Tot	d seve ional - Neu conditi	9 eral and 9 tral 9 ons-
Inelastic behavior - UNIT – III: BEAM Beam columns: I concentrated loads, flexural buckling. L UNIT – IV: BUCH Buckling of fram equilibrium-Slope- UNIT – V: BUCK Buckling of plates-D Energy method-Finit REFERENCE BC 1. Chajes, A. "P	Tangent mod I COLUMN Introduction-H distributed le ateral buckling KLING OF H intes-Introduction deflection eque LING OF P ifferential eque e difference m DOKS: rinciples of S	dulus and D Sehaviour, S bad and end g of beams, p RAMES on-Modes of tations-Matr LATES ation of plate ethod.	of colum ouble ma Stability couples. ure bend of buckl ix Analy e buckling tability	analysis analysis . Beams: ling of simp ling-Critica g-Critical Theory",	of beam Torsional ply suppo al load load on p Prentice	column l buckling- rted and ca using var lates for va	with sing Combined ntilever be ious met rious bour ndia, 199	le and Tors ams. hods:- ndary o Tota	d seve ional - Neu conditi	9 eral and 9 tral 9 ons-
Inelastic behavior - UNIT – III: BEAM Beam columns: I concentrated loads, flexural buckling. L UNIT – IV: BUCH Buckling of fram equilibrium-Slope- UNIT – V: BUCK Buckling of plates-D Energy method-Finit REFERENCE BC 1. Chajes, A. "P 2. Ashwin Kuma	Tangent mod A COLUMN Introduction-E distributed la ateral buckling KLING OF E introduction deflection equ LING OF P ifferential equ e difference m OKS: rinciples of S ar, "Stability	dulus and D Sehaviour, S bad and end g of beams, p rRAMES on-Modes on ations-Matr LATES ation of plate ethod. Structures S of Structur	of colum ouble me Stability couples. ure bend of buckl ix Analy e buckling tability es", All	analysis analysis . Beams: ling of simp ling-Critica ////////////////////////////////////	of beam Torsional oly suppo al load load on p Prentice shers Lto	column l buckling- rted and ca using var lates for va e Hall of I d, New De	with sing Combined ntilever be ious met rious bour ndia, 199 elhi, 1998	le and l Tors ams. hods:- idary o Tota 0.	d seve ional - Neu conditi	9 eral and 9 tral 9 ons-
Inelastic behavior - UNIT – III: BEAM Beam columns: I concentrated loads, flexural buckling. L UNIT – IV: BUCH Buckling of fram equilibrium-Slope- UNIT – V: BUCK Buckling of plates-D Energy method-Finit REFERENCE BC 1. Chajes, A. "P	Tangent mod A COLUMN Introduction-E distributed la ateral buckling KLING OF E introduction deflection equ LING OF P ifferential equ e difference m OKS: rinciples of S ar, "Stability	dulus and D Sehaviour, S bad and end g of beams, p rRAMES on-Modes on ations-Matr LATES ation of plate ethod. Structures S of Structur	of colum ouble me Stability couples. ure bend of buckl ix Analy e buckling tability es", All	analysis analysis . Beams: ling of simp ling-Critica ////////////////////////////////////	of beam Torsional oly suppo al load load on p Prentice shers Lto	column l buckling- rted and ca using var lates for va e Hall of I d, New De	with sing Combined ntilever be ious met rious bour ndia, 199 elhi, 1998	le and l Tors ams. hods:- idary o Tota 0.	d seve ional - Neu conditi	9 eral and 9 tral 9 ons-
Inelastic behavior - UNIT – III: BEAM Beam columns: I concentrated loads, flexural buckling. L UNIT – IV: BUCH Buckling of fram equilibrium-Slope- UNIT – V: BUCK Buckling of plates-D Energy method-Finit REFERENCE BC 1. Chajes, A. "P 2. Ashwin Kuma	Tangent mod A COLUMN Introduction-E distributed le ateral buckling KLING OF E introduction deflection equ LING OF P ifferential equ e difference m OKS: rinciples of S ar, "Stability ability Analy	dulus and D Sehaviour, S bad and end g of beams, p RAMES on-Modes of tations-Matr LATES ation of plate ethod. Structures S of Structur sis and Des	of colum ouble me Stability couples. ure bend of buckling ix Analy e buckling tability es", All sign of S	analysis analysis . Beams: ling of simp ing-Critical g-Critical Theory", ied Publi	of beam Torsional oly suppo al load load on p Prentice shers Lto 3", spring	column l buckling- rted and ca using var lates for va lates for va e Hall of I d, New Da ger, New Y	with sing Combined ntilever be ious met rious bour ndia, 199 elhi, 1998 York, 201	le and l Tors ams. hods:- ndary o Tota 0. 3. 0.	d seve ional - Neu conditi	9 eral and 9 tral 9 ons-
Inelastic behavior - UNIT – III: BEAM Beam columns: In concentrated loads, flexural buckling. L UNIT – IV: BUCH Buckling of fram equilibrium-Slope- UNIT – V: BUCK Buckling of plates-D Energy method-Finit REFERENCE BC 1. Chajes, A. "P 2. Ashwin Kuma 3. Gambhir, "Sta	Tangent mod A COLUMN Introduction-E distributed le ateral buckling KLING OF E introduction deflection equ LING OF P ifferential equ e difference m OKS: rinciples of S ar, "Stability ability Analy	dulus and D Sehaviour, S bad and end g of beams, p RAMES on-Modes of tations-Matr LATES ation of plate ethod. Structures S of Structur sis and Des	of colum ouble me Stability couples. ure bend of buckling ix Analy e buckling tability es", All sign of S	analysis analysis . Beams: ling of simp ing-Critical g-Critical Theory", ied Publi	of beam Torsional oly suppo al load load on p Prentice shers Lto 3", spring	column l buckling- rted and ca using var lates for va lates for va e Hall of I d, New Da ger, New Y	with sing Combined ntilever be ious met rious bour ndia, 199 elhi, 1998 York, 201	le and l Tors ams. hods:- ndary o Tota 0. 3. 0.	d seve ional - Neu conditi	9 eral and 9 tral 9 ons-

COURSE OUTCO	ADVANCED CONCRETE TECHNOLOGY	3	0	0
COURSE OUTCO	MES			
Upon completion of	f this course, the student will be able to			
CO1 discuss micros	structure concrete and dimensional stability			
CO2 prepare a mix	design for the various mix proportions			
	properties of ingredients used in concretes			
	fferent types of special concrete and their applications in construction.			
-	ent types of non-destructive testing methods.			
	RETE CHARACTERISATION			9
	oncrete: Aggregate phase, hydrated cement paste, interfacial transition	zone	. Stre	
	elationship, failure modes in concrete, factors affecting compressive str			
	various stress states. Dimensional stability: Elastic behavior, drying	-		
	hkage and thermal properties of concrete.	, 51111	inter B	e u
	ORTIONING CONCRETE MIXTURES			9
	pjectives, general considerations, procedures, Methods of concrete mix	, desi	on c	
	ad high performance concrete using relevant codes. Testing and cont			
	a significance, accelerated strength testing, core tests and quality cont			
<u> </u>	ABILITY OF CONCRETE		ants.	9
		ion of	Foor	-
	of deterioration: structure of water, permeability, causes of deteriorati allization of salts in pores, frost action, effect of fire, sulfate attack, a			
•	· · · · · · · · · · · · · · · · · · ·		00	-
	osion of embedded steel in concrete: Mechanism-control, developm			
	deterioration, concrete in the marine environment. Methods of pro-	oviali	ig at	Irac
	n tests to assess long-term behaviour.			0
	TAL TYPES OF CONCRETE			<u>9</u>
Roller compacted	concrete-self compacted concrete-shrinkage compensation conc			W10
-			-	
concrete-concrete c	containing polymers-heavy weight concrete for radiation shielding-high	gh pe	rforr	nan
concrete-concrete c concrete, high stren	ngth concrete, shotcrete, fibre reinforced concrete- bacterial concrete-M	gh pe	rforr	nan
concrete-concrete c concrete, high stren their materials, mix	ngth concrete, shotcrete, fibre reinforced concrete- bacterial concrete- proportions, properties, applications and limitations.	gh pe	rforr	nan rete
concrete-concrete c concrete, high stren their materials, mix UNIT – V: NON-I	ngth concrete, shotcrete, fibre reinforced concrete- bacterial concrete- a proportions, properties, applications and limitations. DESTRUCTIVE METHODS	gh pe Mass	erforr conc	nan rete 9
concrete-concrete c concrete, high stren their materials, mix UNIT – V: NON-I Surface hardness m	ngth concrete, shotcrete, fibre reinforced concrete- bacterial concrete-Na proportions, properties, applications and limitations. DESTRUCTIVE METHODS methods, Penetration resistance techniques, pull out tests, maturity methods	gh pe Mass	tress	nan rete 9 wa
concrete-concrete c concrete, high stren their materials, mix UNIT – V: NON-I Surface hardness m	ngth concrete, shotcrete, fibre reinforced concrete- bacterial concrete- a proportions, properties, applications and limitations. DESTRUCTIVE METHODS	gh pe Mass	tress	nan rete 9 wa
concrete-concrete c concrete, high stren their materials, mix UNIT – V: NON-I Surface hardness m propagation metho	ngth concrete, shotcrete, fibre reinforced concrete- bacterial concrete-Na proportions, properties, applications and limitations. DESTRUCTIVE METHODS methods, Penetration resistance techniques, pull out tests, maturity methods, electrical methods, electromagn	gh pe Mass	tress	nan rete 9 wa
concrete-concrete c concrete, high stren their materials, mix UNIT – V: NON-I Surface hardness m propagation metho	ngth concrete, shotcrete, fibre reinforced concrete- bacterial concrete-Na proportions, properties, applications and limitations. DESTRUCTIVE METHODS methods, Penetration resistance techniques, pull out tests, maturity methods, electrical methods, electromagn	gh pe Mass Iod, s netic	tress	nan rete 9 wa thoo
concrete-concrete c concrete, high stren their materials, mix UNIT – V: NON-I Surface hardness m propagation metho Tomography of rein	ngth concrete, shotcrete, fibre reinforced concrete- bacterial concrete-Na proportions, properties, applications and limitations. DESTRUCTIVE METHODS methods, Penetration resistance techniques, pull out tests, maturity methods, electrical methods, electromagnetical concrete.	gh pe Mass Iod, s netic	tress met	nan rete 9 wa thoo
concrete-concrete c concrete, high stren their materials, mix UNIT – V: NON-I Surface hardness m propagation methe Tomography of rein	ngth concrete, shotcrete, fibre reinforced concrete- bacterial concrete-Na proportions, properties, applications and limitations. DESTRUCTIVE METHODS methods, Penetration resistance techniques, pull out tests, maturity methods, electrical methods, electromagnetical concrete.	gh pe Mass od, s netic Tot	tress met	nan rete 9 wa thoo 5 h
concrete-concrete c concrete, high stren their materials, mix UNIT – V: NON-I Surface hardness m propagation methe Tomography of rein REFERENCE BO 1Kumar Mehta, I	ngth concrete, shotcrete, fibre reinforced concrete- bacterial concrete-Na proportions, properties, applications and limitations. DESTRUCTIVE METHODS methods, Penetration resistance techniques, pull out tests, maturity methods, electrical methods, electromagnetical methods, electromagnetical methods, electromagnetical concrete. DOKS:	gh pe Mass od, s netic Tot	tress met	nan rete 9 wa thoo 5 h
concrete-concrete c concrete, high stren their materials, mix UNIT – V: NON-I Surface hardness m propagation metho Tomography of rein REFERENCE BO 1Kumar Mehta, I Education(India	ngth concrete, shotcrete, fibre reinforced concrete- bacterial concrete-Na proportions, properties, applications and limitations. DESTRUCTIVE METHODS methods, Penetration resistance techniques, pull out tests, maturity methods, electrical methods, electrochemical methods, electromagniforced concrete. DOKS: Paulo J.M Monteiro., Concrete Microstructure, properties and Materia	gh pe Mass od, s netic Tot	tress met	nan rete 9 wa thoo 5 h
concrete-concrete c concrete, high stren their materials, mix UNIT – V: NON-I Surface hardness m propagation methe Tomography of rein REFERENCE BO 1Kumar Mehta, I Education(India 2. Job Thomas, "Co	ngth concrete, shotcrete, fibre reinforced concrete- bacterial concrete-Natoroportions, properties, applications and limitations. DESTRUCTIVE METHODS methods, Penetration resistance techniques, pull out tests, maturity methods, electrical methods, electromager nforced concrete. DOKS: Paulo J.M Monteiro., Concrete Microstructure, properties and Material) Pvt Ltd, New Delhi, 2014	gh pe Mass od, s netic Tot	tress met	nan rete 9 wa thoo 5 h
concrete-concrete c concrete, high stren their materials, mix UNIT – V: NON-I Surface hardness m propagation methe Tomography of rein REFERENCE BO 1Kumar Mehta, I Education(India 2. Job Thomas, "Co 3. Gambhir.M.L., O	ngth concrete, shotcrete, fibre reinforced concrete- bacterial concrete-National properties, applications and limitations. DESTRUCTIVE METHODS methods, Penetration resistance techniques, pull out tests, maturity methods, electrical methods, electrochemical methods, electromagniforced concrete. DOKS: Paulo J.M Monteiro., Concrete Microstructure, properties and Material) Pvt Ltd, New Delhi, 2014 oncrete Technology", Cengage Learning India, 2015 Concrete Technology, McGraw Hill Education, 2011	gh pe Mass od, s netic Tot	tress met	nan rete 9 wa thoo 5 h
concrete-concrete c concrete, high strent their materials, mix UNIT – V: NON-I Surface hardness m propagation metho Tomography of rein REFERENCE BO 1Kumar Mehta, I Education(India 2. Job Thomas, "Co 3. Gambhir.M.L., Co 4. Gupta.B.L., Ami	ngth concrete, shotcrete, fibre reinforced concrete- bacterial concrete-Na proportions, properties, applications and limitations. DESTRUCTIVE METHODS methods, Penetration resistance techniques, pull out tests, maturity methods, electrical methods, electrochemical methods, electromager inforced concrete. DOKS: Paulo J.M Monteiro., Concrete Microstructure, properties and Material (1) Pvt Ltd, New Delhi, 2014 oncrete Technology", Cengage Learning India, 2015 Concrete Technology, McGraw Hill Education, 2011 it Gupta, "Concrete Technology, Jain Book Agency, 2010.	gh pe Mass od, s netic Tot	tress met	nan rete 9 wa thoo 5 h
concrete-concrete c concrete, high strent their materials, mix UNIT – V: NON-I Surface hardness m propagation methe Tomography of rein REFERENCE BO 1Kumar Mehta, I Education(India 2. Job Thomas, "Co 3. Gambhir.M.L., O 4. Gupta.B.L., Ami 5. Neville, A.M., P	ngth concrete, shotcrete, fibre reinforced concrete- bacterial concrete-National properties, applications and limitations. DESTRUCTIVE METHODS methods, Penetration resistance techniques, pull out tests, maturity methods, electrical methods, electrochemical methods, electromagniforced concrete. DOKS: Paulo J.M Monteiro., Concrete Microstructure, properties and Material) Pvt Ltd, New Delhi, 2014 oncrete Technology", Cengage Learning India, 2015 Concrete Technology, McGraw Hill Education, 2011	gh pe Mass od, s netic Tot	tress met	nan rete 9 wa thoo 5 h

P19GE101

COURSE OUTCOMES

At the end of the course, the student will be able to

- 1. Review the literature of the research problem
- 2. Choose appropriate data collection and sampling method according to the research problem.
- 3. Interpret the results of research and communicate effectively with their peers
- 4. Explain the Importance of intellectual property rights
- 5. Evaluate trade mark, develop and register patents

UNIT 1 **INTRODUCTION TO RESEARCH METHODS**

Definition and Objective of Research, Various steps in Scientific Research, Types of Research, Criteria for Good Research, Defining Research Problem, Research Design, Case Study Collection of Primary and Secondary Data, Collection Methods: Observation, Interview, Questionnaires, Schedules,

UNIT 2 SAMPLING DESIGN AND HYPOTHESIS TESTING 6

steps in Sampling Design, Types of Sample Designs, Measurements and Scaling Techniques - Testing of hypotheses concerning means (one mean and difference between two means -one tailed and two tailed tests), concerning variance - one tailed Chi-square test.

UNIT 3 INTERPRETATION AND REPORT WRITING

Techniques of Interpretation, Precaution in Interpretation, Layout of Research Report, Types of Reports, Oral Presentation, Mechanics of Writing Research Report

UNIT 4 INTRODUCTION TO INTELLECTUAL PROPERTY 6

Introduction, types of intellectual property, international organizations, agencies and treaties, importance of intellectual property rights, Innovations and Inventions trade related intellectual property rights.

UNIT 5 **TRADE MARKS, COPY RIGHTS AND PATENTS**

Purpose and function of trade marks, acquisition of trade mark rights, trade mark registration processes, trademark claims -- trademark Litigations- International trademark law

Fundamental of copy right law, originality of material, rights of reproduction, rights to perform the work publicly, copy right ownership issues, copy right registration, notice of copy right, international copy right law.

Law of patents: Foundation of patent law, patent searching process, ownership rights and transfer

THEORY: 30 Hours TUTORIAL: -PRACTICAL: -TOTAL: 30 Hours

21.12.2020

6

6

TEXT BOOKS

- 1. C.R. Kothari, Gaurav Garg, Research Methodology Methods and Techniques ,4th Edition, New Age International Publishers, 2019.
- 2. Deborah E. Bouchoux, "Intellectual Property: The Law of Trademarks, Copyrights, Patents, and Trade Secrets", Delmar Cengage Learning, 4th Edition, 2012.
- Prabuddha Ganguli, "Intellectual Property Rights: Unleashing the Knowledge Economy", Tata Mc Graw Hill Education, 1st Edition, 2008.

REFERENCE BOOKS

- 1. Panneerselvam, R., Research Methodology, Second Edition, Prentice-Hall of India, New Delhi, 2013.
- 2. Ranjith Kumar, Research Methodology A step by step Guide for Begineers, 4th edition, Sage publisher, 2014.
- 3. D Llewelyn & T Aplin W Cornish, "Intellectual Property: Patents, Copyright, Trade Marks and Allied Rights", Sweet and Maxwell, 1st Edition, 2016.
- 4. Ananth Padmanabhan, "Intellectual Property Rights-Infringement and Remedies", Lexis Nexis, 1st Edition, 2012.
- 5. Ramakrishna B and Anil Kumar H.S, "Fundamentals of Intellectual Property Rights: For Students, Industrialist and Patent Lawyers", Notion Press, 1st Edition, 2017.
- 6. M.Ashok Kumar and Mohd.Iqbal Ali :"Intellectual Property Rights" Serials Pub

P19GE701

English for Research Paper Writing

2000

6

6

6

6

Course Outcomes:

At the end of the course, the students will be able to

- Demonstrate research writing skills both for research articles and thesis
- Frame suitable title and captions as sub-headings for articles and thesis
- Write each section in a research paper and thesis coherently
- Use language appropriately and proficiently for effective written communication
- · Exhibit professional proof-reading skills to make the writing error free

Unit - I

Planning and preparation, word order, breaking up long sentences, organising ideas into paragraphs and sentences, being concise and avoiding redundancy, ambiguity and vagueness

Unit – II

Interpreting research findings, understanding and avoiding plagiarism, paraphrasing sections

of a paper/ abstract.

Unit- III

Key skills to frame a title, to draft an abstract, to give an introduction

Unit – IV

Skills required to organise review of literature, methods, results, discussion and conclusions

Unit - V

Usage of appropriate phrases and key terms to make the writing effective - proof-reading to ensure error-free writing.

Text Books:

- 1. Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011
- Highman N, Handbook of Writing for the Mathematical Sciences, SIAM. Highman's book, 1998.
- 3. Day R, How to Write and Publish a Scientific Paper, Cambridge University Press, 2006.
- 4. Goldbort R, Writing for Science, Yale University Press, 2006. (available on Google Books)

REFERENCES

Martin Cutts, Oxford Guide to Plain English, Oxford University Press, Second Edition, 2006

Total: 30 hours

Dr. M. Renuga BoS – Chairperson, Science & Humanities HOD / H&L

Sona College of Technology, Salem (An Autonomous Institution) Courses of Study for ME II Semester under Regulations 2019 Civil Engineering Branch: Structural Engineering

S. No	Course Code	Course Title	Lecture	Tutorial	Practical	Credit	Total Contact Hours
		Theory					Hours
1	P19STR201	Advanced Design of Concrete Structures	3	0	0	3	45
2	P19STR202	Advanced Design of Steel Structures	3	0	0	3	45
3	P19STR517	Elective – Design of Sub Structures	3	0	0	3	45
4	P19STR525	Elective – Internet of Things of Civil Engineering	3	0	0	3	45
5	P19GE702	Audit Course – Stress Management by Yoga	2	0	0	0	30
		Practical					
6	P19STR203	Structural Software Application Laboratory	1	0	4	3	75
7	P19STR204	Mini Project	0	0	4	2	60
				To	otal Credits	17	

Approved by

Chairperson, Civil Engineering BOS Dr.R.Malathy

Member Secretary, Academic Council Dr.R.Shivakumar Chairperson, Academic Council & Principal Dr.S.R.R.Senthil Kumar

Copy to:-

HOD/Civil, Second Semester ME STR Students and Staff, COE

P19STR201Advanced Design of Concrete Structures3003COURSE OUTCOMES

At the end of the course, the student will be able to:

- CO1. Describe the design philosophy of Concrete Structures
- CO2. Design the columns, walls, corbels, deep beams and grid floors
- CO3. Design the flat slabs by yield line approach
- CO4. Discuss the inelastic behaviour of concrete beams and columns
- CO5. Deliberate the detailing for ductility of beams, columns and frames

UNIT-I: INTRODUCTION

Calculation of deflection and crack width according to IS Code. Construction of Interaction curve for compression member with axial force and bending – Design of slender column. Behaviour of beams for flexure, shear and torsion.

UNIT –II: DESIGN OF SPECIAL REINFORCED CONCRETE ELEMENTS

Design of Reinforced Concrete walls, Design of shear wall, – Strut and tie method of analysis for corbels and deep beams, Design of corbels, deep beams and grid floors.

UNIT -III: FLAT SLABS AND YIELD LINE APPROACH

Design of flat slabs according to IS method - Design of spandrel beams - Yield line analysis and design of square, rectangular, triangular and circular slabs with various boundary conditions. Hillerborg's strip method.

UNIT –IV: INELASTIC BEHAVIOUR OF CONCRETE BEAMS AND COLUMNS 9 Hrs.

Inelastic behaviour of concrete beams by Baker's method, moment – rotation - curvature characteristics. Limit analysis – Conditions for moment redistribution - Stress-Strain behaviour of confined and unconfined columns.

UNIT -V: DUCTILE DETAILING

Concept of Ductility – Design and detailing of beams, columns for ductility - Design of cast-in-situ joints in frames – Determination of ductility factor for singly and doubly reinforced beams.

REFERENCE BOOKS:

- 1. Gambhir.M. L., "Design of Reinforced Concrete Structures", Prentice Hall of India, 2012.
- 2. Purushothaman, P, "Reinforced Concrete Structural Elements: Behaviour Analysis and Design", Tata McGraw Hill, 1984
- 3. Unnikrishna Pillai and Devdas Menon "Reinforced Concrete Design', Third Edition, Tata McGraw Hill Publishers Company Ltd., New Delhi, 2009.
- 4. Varghese, P.C, "Advanced Reinforced Concrete Design", Prentice Hall of India, 2005.
- 5. Varghese, P.C., "Limit State Design of Reinforced Concrete", Prentice Hall of India, 2007.

9 Hrs.

9 Hrs.

9 Hrs.

9 Hrs.

Total: 45 hrs.

CO1. Explain and design the different types of steel connections CO2. Analysis and design various components of industrial structures. CO3. Design the steel members subjected to combined forces. CO4. Design steel chimney subjected to wind loads. CO5. Evaluate the behaviour and design of light gauge elements. **UNIT-I: DESIGN OF CONNECTIONS** 9 Hrs. Connections. UNIT -II: ANALYSIS AND DESIGN OF INDUSTRIAL BUILDINGS 9 Hrs. Industrial building-Planning-Structural framing-Elements of industrial building- Analysis and design of trussesdetailing for earthquake and wind loads. Design consideration for durability. **UNIT -III: DESIGN OF COMBAINED FORCES** 9 Hrs. Design of members subjected to combined forces: Beam-Column-Crane Gantry Girders –Design of simple bases, Gusseted bases and Moment Resisting Base Plates **UNIT -IV: DESIGN OF STEEL CHIMNEY** 9 Hrs. Introduction to chimneys -Types-Dimensions of steel stacks-Components: Lining- Breech openings and access **UNIT -V: DESIGN OF LIGHT GAUGE STEEL STRUCTURES** 9 Hrs. deflection determination-Analysis and design of compression and flexural members. Total: 45 hrs. **REFERENCE BOOKS:** Subramanian N, "Design of Steel Structures", Oxford University Press, New Delhi 2011. 1. Duggal S.K, "Design of Steel Structures", Tata McGraw-Hill Education, 2009. 2. Shiyekar M.R, "Limit State Design in Structural Steel", Prentice Hall of India Pvt. Ltd, 2017. 3. Punmia B.C., Comprehensive Design of Steel Structures, Lakshmi Publications, New Delhi, 2000. 4. Teaching Resource on Structural steel Design, INSDAG, Ministry of Steel Publishing, 2000. 5. Bhavikatti.S.S, "Deign of Steel structures", I.K. International publishing house, New Delhi, 2009. 6.

P19STR202

Introduction- Classification of connections. Bolted and Welded connections: Basic concepts- Beam-to-Beam connections. Beam-Column connection: Unstiffened and Stiffened seated Connections-Moment Resistant

Advanced Design of Steel Structures

Design of Purlins, Gable column and Gable wind girder-Introduction to pre-engineered building. Design and

ladder-Loading and load combinations-Design considerations-Design of self supporting and guved steel chimney.

Light gauge steel section: Introduction-Applications-Advantages-Behaviour-Forms-Edge and Intermediate stiffener-Stiffened, unstiffened and multiple stiffened element-Flat-width ratio-Effective width for load and

P19STR203	Structural Software Application Laboratory	1043
COURSE OUTCOM	IES	
At the end of the cou	rse, the student will be able to:	
CO1. Analysis and	nd design of steel roof trusses by softwares	
CO2. Analysis and	nd design of Reinforced Concrete frames by softwares	
CO3. Analysis of	various members by Finite Element Analysis softwares	
Contents		45 Hrs.
1. Analysis and	design of 2D and 3D Steel roof trusses for static, wind and seismic force	·S.
2. Analysis and	design of 2D and 3D Reinforced Concrete rigid frames for static, wind a	and seismic forces.
3. Finite Eleme	nt modeling, analysis and design of Reinforced Concrete and Steel Elem	ents.
		Total: 75 hrs.
References:-		
	nanuals prepared by Civil Engineering Department, Sona College of Tech	
2. Unnikrishna	Pillai and Devdas Menon "Reinforced Concrete Design', Third Edition, T	fata McGraw Hill
Publishers C	ompany Ltd., New Delhi, 2009.	
3 Subramaniar	N "Design of Steel Structures" Oxford University Press, New Delhi 20	11

- Subramanian N, "Design of Steel Structures", Oxford University Press, New Delhi 2011
 Prof. S.K. Bhattacharyya and Dr. D. Maity "Finite Element Analysis" NPTEL Web course, IIT Kharagpur.

P19STR204	Mini Project	0 0 4 2
COURSE OUTCOM	ES	
At the end of the o	course, the student will be able to:	

CO1. Identify structural engineering problems reviewing available literature.

CO2. Study different techniques used to analyze complex structural systems.

CO3. Work on the solutions given and present solution by using his/her technique applying engineering

principles. Syllabus Contents:

30 Hrs.

Mini Project will have mid semester presentation and end semester presentation. Mid semester presentation will include identification of the problem based on the literature review on the topic referring to latest literature available.

End semester presentation should be done along with the report on identification of topic for the work and the methodology adopted involving scientific research, collection and analysis of data, determining solutions highlighting individuals' contribution.

Continuous assessment of Mini Project at Mid Semester and End Semester will be monitored by the departmental committee.

Total: 60 hrs.

COURSE OUTCOMES

P19STR517

At the end of the course, the student will be able to

CO1. Describe the basic requirements of foundations and design the shallow foundations

CO2. Design of pile foundations

CO3. Design of well foundations

CO4. Design of machine foundations

CO5. Design of foundations on expansive soil

UNIT-I: SHALLOW FOUNDATIONS

Soil investigation - Basic requirements of foundation - Types and selection of foundations. Bearing capacity of soil - plate load test – Design of reinforced concrete isolated, strip, combined and strap footings – mat foundation.

UNIT -II: PILE FOUNDATIONS

Introduction – Types of pile foundations – load carrying capacity - pile load test – structural design of straight piles –configuration of piles- different shapes of piles cap – structural design of pile cap.

UNIT –III: WELL FOUNDATIONS

Types of well foundation – Grip length – load carrying capacity – construction of wells – Failures and Remedies – Design of well foundation - Lateral stability.

UNIT -IV: MACHINE FOUNDATIONS

Introduction - Types of machine foundation - Basic principles of design of machine foundation - Dynamic properties of soil - vibration analysis of machine foundation - Design of foundation for Reciprocating machines and Impact machines - Reinforcement and construction details - vibration isolation.

UNIT -V: SPECIAL FOUNDATIONS

Foundation on expansive soils - choice of foundation - under-reamed pile foundation. Foundation for concrete Towers, chimneys – Design of anchors- Reinforced earth retailing walls.

REFERENCE BOOKS:

Bowles .J.E., "Foundation Analysis and Design", McGraw Hill Publishing co., New York, 1997. 1.

Swamy Saran, Analysis and Design of substructures, Oxford and IBH Publishing Co. Pvt. Ltd., 2006. 2.

- Tomlinson.M.J, "Foundation Design and Construction", Longman, Sixth Edition, New Delhi, 1995. 3.
- Varghese.P.C, "Design of Reinforced Concrete Foundations" PHI learning private limited, New Delhi -4. 2009.

Design of Substructures

3003

9 Hrs.

Total: 45 hrs.

9 Hrs.

9 Hrs.

9 Hrs.

9 Hrs.

COURSE OUTCOMES To enable students to CO1. Discuss the architecture of Internet of Things (IOT) CO2. Know the concept of Web of Things (WoT)

- CO3. Know the Sensors used in IoT
- CO4. Application of IoT in Smart Cities

CO5. Discuss the role of IoT in Environmental monitoring

UNIT-I: INTRODUCTION

P19STR525

Definition and functional Requirements - Motivation - Architecture - Web3.0 View of IoT - Ubiquitous IoT applictions - Four pillars of IoT - DNA of IoT - The Toolkit approach for End-user participation in the Internet of Things .Middleware for IoT: Overview - Communication middleware for IoT - IoT Information Security

Internet of Things of Civil Engineering

UNIT -II: WEB OF THINGS

Web of things versus Internet of things - Two pillars of the web-Architecture Standardization for WoT - Unified Multitier WoT Architecture.Cloud of Things: Grid / SOA and cloud computing - Mobile Cloud computing - The cloud of things.

UNIT -III: IOT SENSORS

Introduction – Detectable phenomena-conversion methods - Commonly measured quantities - Physical Principles-Selection of sensor - Need for sensor - role of sensor. Types of sensor: Requirements, Advantages, disadvantages and application - Pressures sensor - Temperature sensor - Humidity sensor - chemical sensor - Accelerometer and gyroscope

UNIT -IV: SMART CITY APPLICATION

Smart transportation - Intelligent parking - Autonomous Vehicle network. Smart buildings - Energy aware - inter building Navigation. Environmental sensing - Sustainable cities - City insights. Health monitoring of structures -Case studies

UNIT -V: ENVIRONMENTAL MONITORING

Water management - Process - application. Airpollution - Methods - Advantages. Water monitoring - Quality standards. Indication of calamities - Alert systems - Applications. Smart irrigation - case study. Micro climate monitoring.

REFERENCE BOOKS:

- The Internet of Things in the Cloud: A Middleware Perspective Honbo Zhou CRC Press 2012 1.
- 2. Architecting the Internet of Things Dieter Uckelmann; Mark Harrison; Florian Michahelles-(Eds.) -Springer - 2011
- 3. The Internet of Things: Applications to the Smart Grid and Building Automation by Olivier Hersent, Omar Elloumi and David Boswarthick - Wiley -2012
- 4. Olivier Hersent, David Boswarthick, Omar Elloumi, "The Internet of Things Key applications and Protocols", Wiley, 2012

3003

10 Hrs.

10 Hrs.

8 Hrs.

9 Hrs.

8 Hrs.

Total: 45 hrs.

Stress Management by Yoga

Course Outcomes:

At the end of completion of this course, students will be able to

- 1. Develop physical and mental health thus improving social health
- 2. Increase immunity power of the body and prevent diseases
- 3. Accelerate memory power
- 4. Achieve the set goal with confidence and determination
- 5. Improve stability of mind, pleasing personality and work with awakened wisdom UNIT I

Yoga-Introduction - Astanga Yoga- 8 parts-Yam and Niyam etc.- Do's and Don'ts in life-Benefits of Yoga and Asana- Yoga Exercise- and benefits- Pranayam Yoga- Nadi suthi, Practice and Spinal Sclearance Practice- Regularization of breathing techniques and its effects-Practice and kapalapathy practice.

UNIT – II

Neuromuscular breathing exercise and Practice- Magarasa Yoga, 14 points Acupressure techniques and practice- Body relaxation practice and its benefits- Raja Yoga- 1.Agna – explanation and practice- Activation of Pituitary- Raja Yoga- 2. Santhi Yoga-Practice-Balancing of physical and mental power.

UNIT – III

Raja Yoga- 3. Sagasrathara yoga -practice- Activation of dormant brain cells-Kayakalpatheory- Kayakalpa -practice-Yogic exercise to improve physical and mental health and practice-Asanas -explanation-Practice-benefits

UNIT-IV

Sun namaskar- 12 poses-explanation and practice-Yoga –Asana-Padmasana, vajrasana,chakrasana, viruchasana etc-Stress management with Yoga-Role of women and Yoga

Equality, nonviolence, Humanity, Self- control- Food and yoga Aware of self-destructive habits

Avoid fault thinking (thought analysis-Practice)-Yoga Free from ANGER (Neutralization of anger)& practice

UNIT - V

Moralisation of Desire & practice- Punctuality-Love-Kindness-Compassion Eradication of worries-Practice -Personality development, positive thinking-Good characters to lead a moral life

How to clear the polluted mind- Benefits of blessing- Five- fold culture –explanation- Karma Yoga Practice In Geetha- Sense of duty-Devotion, self- reliance, confidence, concentration, truthfulness, cleanliness.

Reference Books

d

1. 'Yogic Asanas for Group Tarining-Part-I" Janardan Swami Yogabhyasi Mandal, Nagpur

2. "Rajayoga or conquering the Internal Nature" by Swami Vivekananda, AdvaitaAshrama (Publication Department), Kolkata

Total: 30 hours

Dr. M. Renuga BoS – Chairperson, Science & Humanities HOD / H&L

05.05.2021

6

Sona College of Technology, Salem (An Autonomous Institution) Courses of Study for ME III Semester under Regulations 2019 Civil Engineering Branch: Structural Engineering

S. No	Course Code	Course Title	Lecture	Tutorial	Practical	Credit	Total Contact Hours
		Theory	1	I			L
1	P19STR301	Design of Steel Concrete Composite Structures	3	0	0	3	45
2	P19STR501	Elective: Prefabricated Structures	3	0	0	3	45
3	P19END601	Open Elective: Product Design and Manufacturing	- 3	0	0	2	45
4	P19ISE601	Open Elective: Transport Safety	- 3	0	0	3	45
		Practical					
5	P19STR302	Technical Seminar	0	0	2	1	30
6	P19STR303	Practical Training	0	0	4	2	60
7	P19STR304	Project Phase – I	0	0	16	8	240
				То	tal Credits	20	

Approved by

Chairperson, Civil Engineering BOS Dr.R.Malathy

Member Secretary, Academic Council Dr.R.Shivakumar Chairperson, Academic Council & Principal Dr.S.R.R.Senthil Kumar

Copy to:-

HOD/Civil, Third Semester ME STR Students and Staff, COE

P19STR301	Design of Steel Concrete Composite Structures	3003
COURSE OUTCOM		
	rse, the student will be able to	
CO1. Understand	the steel-concrete composite actions	
CO2. Design of c	omposite members	
CO3. Design of c	onnections in composite structures	
	of box girder bridges	
CO5. Seismic bel	naviour of composite structures	
UNIT-I: INTRODU		9 Hrs.
Introduction to stee	1 - concrete composite construction - Codes - Composite ac	ction – Serviceability and
Construction issues i	n design.	
UNIT –II: DESIGN	OF COMPOSITE MEMBERS	9 Hrs.
Design of composite	beams, slabs, columns, beam - columns - Design of composite trus	sses.
UNIT -III: DESIG	N OF CONNECTIONS	9 Hrs.
	Types – Design of connections in composite structures – Design of	
shear interaction.		
UNIT IV. COMP	OSITE BOX GIRDER BRIDGES	9 Hrs.
	our of box girder bridges - design concepts.	7 111 5.
introduction benavi	our of box gruer onages acsign concepts.	
UNIT -V: CASE S	rudies	9 Hrs.
Case studies on steel	- concrete composite construction in buildings - seismic behaviour	of composite structures.
		Total: 45hrs.
REFERENCE BOO	DKS:	
1. Johnson R.P	., "Composite Structures of Steel and Concrete Beams, Slabs,	Columns and Frames for
	Vol.I, Blackwell Scientific Publications, 2004.	
	and Bradford M.A., "Composite Steel and Concrete Structura	al Members, Fundamental
1 1		

behaviour", Pergamon press, Oxford, 1995.
 Owens.G.W and Knowles.P, "Steel Designers Manual", Steel Concrete Institute(UK), Oxford Blackwell Scientific Publications, 1992.

01.09.2021

P19STR501 COURSE OUTCOMES

Upon completion of this course, the student will be able to ...

- CO1 Explain the principles and concepts of Prefabricated Structures.
- CO2 Describe prefabricated elements along with their structural connections.
- CO3 Summarize the production techniques of prefabricated elements.
- CO4 Elucidate the hoisting techniques adopted in prefabrication construction.
- CO5 Discuss the applications of prefabrication in construction field.

UNIT-I: GENERAL PRINCIPLES OF FABRICATION

Comparison with monolithic construction – Types of prefabrication – site and plant prefabrication – Economy of prefabrication – Modular coordination – Standardization– Disuniting of structures – Handling and erection stresses.

PREFABRICATED STRUCTURES

UNIT-II: PREFABRICATED ELEMENTS

Roof and floor panels – wall panels – shear walls - columns – Joints for different structural connections – Effective sealing of joints for water proofing – Provisions for non-structural fastenings –Expansion joints in pre-cast construction

UNIT-III: PRODUCTION TECHNOLOGY

Choice of production setup – Manufacturing methods – Stationary and mobile production – Planning of production setup – Storage of precast elements – Dimensional tolerances – Acceleration of concrete hardening.

UNIT-IV: HOISTING TECHNOLOGY

Equipment for hoisting and erection – Elimination of erection stresses – Techniques for erection of different types of members like Beams, Slabs, Wall panels and Columns – Vacuum lifting pads – Lifting with external pre-stressing.

UNIT-V: APPLICATIONS

Designing and detailing of precast unit for factory structures – Purlins, Principal rafters, roof trusses, lattice girders, gable frames – Single span single storeyed frames – Single storeyed buildings – slabs, beams and columns - water tanks

Total: 45 hrs.

REFERENCE BOOKS:

1. I. T. Koncz, Manual of Precast Concrete Construction, Vol. I, II, III & IV, Berlin, 1971

2. B. Lewicki, Building with Large Prefabricates, Elsevier Publishing Company, Amsterdam, London, New York, 1998

3. L. Mokk, Prefabricated Concrete for Industrial and Public Structures, Publishing House of the Hungarian Academy of Sciences, Budapest, 2007.

4. Structural Design Manual, Precast Concrete Connection Details, Society for the Studies in the use of Precast Concrete, Netherland BetorVerlag, 2009

5.Kims S. Elliot, Precast Concrete Structures, CRC Press, Taylor & Francis, 2017

6. IS15916:2011, Building design and erection using prefabricated concrete. BIS, India, 2011.

9

9

9

9

P19STR302	Technical Seminar	0	0	2	1
COURSE OUTCO	MES				
The students wi	Il be trained to face an audience and to tackle any problem during grou	ip disc	cuss	ion	in
the Interviews					
Syllabus					
The students will w	work for two hours per week guided by a group of staff members. The	ey wil	ll be	asł	sed
to give a presentat	ion on any topic of their choice related to Structural Engineering an	nd to	eng	age	in
discussion with the	audience. A brief copy of their presentation also should be submitted	d. Sin	nilar	ly, t	the
students will have t	to present a seminar of not less than fifteen minutes and not more that	n thir	ty m	inu	tes
on the technical to	pic. They will defend their presentation. Evaluation will be based of	on the	e tec	chni	cal
presentation and the	e report and also on the interaction shown during the seminar.				

Total: 30hrs

P19STR303	Practical Training	0	0	4	2		
COURSE OUTCOMES							
To train the stud	ents in the field work so as to have a firsthand knowledge of practical	probl	ems				
related to Struct	ural Engineering in carrying out engineering tasks.						
To develop skill	To develop skills in facing and solving the field problems						
They are trained	They are trained in tackling a practical field/industry orientated problem related to Structural						
Engineering.							
Syllabus							
The students indiv	idually undertake training in reputed Industries during the summer	r vaca	tion	for	r a		
specified period of four weeks. At the end of training, a detailed report on the work done should be							
submitted within ten days from the commencement of the semester. The students will be evaluated							
through a viva-voce	e examination by a team of internal staff.						
		Total	: 60	hrs	•		

At the end of the course the students will have a clear idea of his/her area of work and they are in a position to
carry out the remaining phase II work in a systematic way.
Sylaabus
The student individually works on a specific topic approved by faculty member who is familiar in this
area of interest. The student can select any topic which is relevant to his/her specialization of the
programme. The topic may be experimental or analytical or case studies. At the end of the semester, a
detailed report on the work done should be submitted which contains clear definition of the identified
problem, detailed literature review related to the area of work and methodology for carrying out the
work. The students will be evaluated through a viva-voce examination by a panel of examiners including

Project Work Phase – I

P19STR304 Course Outcomes

one external examiner

urse Outcomes At the end of the course the students will have a clear idea of his/her area of work and they are in a position to

0 0 16 8

Total: 240hrs

Open Electives

<u>CIVIL</u>

P19CEM601	DISASTER MITIGATION AND MANAGEMENT	3	0	0	3
COURSE OUTCO			0	0	5
	of this course, the student will be able to				
1 1 0	the types of hazards, vulnerability and micro zonation				
-	the causes and effects of disasters				
-	the preparedness and forecasting the disasters				
	various post disaster activities				
	the disaster management solutions from case studies				
	DUCTION			9 Hi	rs.
	s of hazards, disasters and catastrophes – Disaster Management; Earth surements - earthquake zones India – vulnerability and micro zona				
Unit –II CAUSES	S AND EFFECTS		!	9 Hr	s.
	s and effects – landslide prone zones in India –Cyclone: Origin and typ age assessment; Flooding: Tsunami –Soil Erosion-Drought :Characteri entive measures			cts o	n
Unit –III PREPA	REDNESS AND FORECASTING		9	9 Hr	s.
zonation maps, Pr zoning- Disaster res	hes in Disaster Management- Pre- disaster stage (preparedness) - Predictability/forecasting& warning- Preparing disaster preparedness sistant house construction- Population reduction in vulnerable areas- A	plan-	La	ind u s	ıse
	DISASTER ACTIVITIES			9 Hr	
Assessment survey Economic Aspect- Preventive Measur Disaster in Hills w	Rescue training for search & operation at national & regional level-Ir rs- Post Disaster stage-Rehabilitation- Political Administrative Aspect- Environmental Aspect- Mitigation - Role of Media - Monitoring res- A regional survey of Land Subsidence, Coastal Disaster, Cycl with particular reference to India -Ecological planning for sustainabilit dia-Sustainable rural development	- Soci g Mai lonic	al A nag Dis	Aspe geme saste	ct- nt- r&
_	STUDIES		9	9 Hr	s.
Soft Solutions for I	Disaster Management - Case studies - Earthquake, volcano and landslic	le - Fl	000	d pro	one
area analysis and m	nanagement - risk assessment - cyclones and floods - Drought and des	ertific	atic	on	
	r.	Fotal :	: 45	, hrs	•
Reference Books:					
Ministry of Home A 2. UNDRO (1995) Organization, Vien 3. Nagarajan, R., (2 Delhi. 4. Ramkuma	2004) Landslide Disaster Assessment and Monitoring, Anmol Publicat ar, Mu, (2009) Geological Hazards: Causes, Consequences and Method	rs Rel	ief		
Containment, New	India Publishing Agency, New Delhi.				

Sona College of Technology, Salem (An Autonomous Institution) Courses of Study for ME IV Semester under Regulations 2019 Civil Engineering Branch: Structural Engineering

S. No	Course Code		Course Title	Lecture	Tutorial	Practical	Credit	Total Contact Hours	
	Practical								
1	P19STR401	Project Phase – II		0	0	28	14	420	
Total Credits						14			

Approved by

Chairperson, Civil Engineering BOS Dr.R.Malathy Member Secretary, Academic Council Dr.R.Shivakumar Chairperson, Academic Council & Principal Dr.S.R.R.Senthil Kumar

Copy to:-

HOD/Civil, Fourth Semester ME STR Students and Staff, COE